مقایسه کارآیی شبکه عصبی مصنوعی و رگرسیون چندگانه در پیش بینی وزن دنبه گوسفند
Authors
abstract
در این مطالعه ارتباط بین وزنهای تولد، از شیرگیری و پایان پروار با وزن دنبه 69 رأس گوسفند بلوچی توسط روشهای شبکه عصبی مصنوعی و رگرسیون چندگانه بررسی شد. هر دو روش با دقت بالایی وزن دنبه را پیشبینی کردند. هر چند که میانگین خطا به صورت معنیداری در روش شبکه عصبی مصنوعی کمتر از رگرسیون چندگانه بود. ضریب تعیین برآورد شده در روش شبکه عصبی مصنوعی (93/0) بالاتر از رگرسیون چندگانه (81/0) به دست آمد. استفاده از شبکه عصبی مصنوعی میانگین خطای استاندارد را 59 و ضریب تعیین را 15 درصد بهبود داد. به نظر میرسد که بتوان با استفاده از شبکه عصبی مصنوعی وزن دنبه را از صفات وزن بدن پیشبینی کرد.
similar resources
مقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی
Background: Diabetes mellitus is a high prevalent disease among the population, and if not controlled, it causes complications and irreparable damage to the eye and cause blindness. This study goal is to investigate the predictive power of multiple logistic regression model and the Artificial Neural Network Multi-layer Perceptron (MLP) in determining patients with and without diabetic...
full textمقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی
زمینه و هدف: بیماری دیابت شیوع بالایی در جامعه دارد و در صورت عدم کنترل، دارای عوارض جبران ناپذیری است و باعث آسیب زدن به چشم و نابینایی می شود. هدف این مطالعه مقایسه کارایی و قدرت پیش بینی مدل آماری رگرسیون لجستیک چندگانه با مدل شبکه عصبی مصنوعی پرسپترون چندلایه(mlp) در تفکیک بیماران دیابتی دارای رتینوپاتی از دیابتی بدون رتینوپاتی است. روش کار: نمونه ها از بین 16000 پرونده بیماران دیابتی مرک...
full textمقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص همزمان بیماری فشارخون و دیابت
Background : Diabetes and hypertension are from important non-communicable diseases in the world and their prevalence are very important for health authorities. The objective of this study was to compare the predictive precision of joint logistic regression (LR) and artificial neutral network (ANN) in concurrent diagnosis of diabetes and hypertension. Methods : This cross-sectional study wa...
full textمقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان
مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پرون...
full textمقایسه مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران لوسمی حاد
چکید ه سابقه و هدف مدل رگرسیون کاکس، یکی از روشهای رایج تحلیل دادههای بقا میباشد که قبل از به کارگیری آن لازم است فرض متناسب بودن خطرات برقرار باشد. اخیراً مدلهای شبکه عصبی بدون نیاز به فرض خاص، جایگزینی مناسب در پیشبینی بقا میباشند. هدف از این مطالعه، مقایسه توانایی مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیشبینی بقای بیماران لوسمی حاد بود. مواد و روش ها در یک مطالعه گذشتهنگر، ...
full textمقایسه کاربرد شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون مؤلفههای اصلی و رگرسیون خطی چندگانه جهت مدلسازی شاخص کیفیت هوای شهری
شاخص کیفیت هوا ابزار کلیدی جهت آگاهی از کیفیت هوا، نحوۀ اثر آلودگی هوا بر سلامت و روشهای محافظتی در برابر آلودگی هوا است. هدف اصلی این تحقیق مدلسازی و برآورد شاخص کیفیت هوا از طریق شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون خطی چندگانه و رگرسیون مؤلفههای اصلی است. جهت محاسبه شاخص کیفیت هوا از دادههای هواشناسی و آلودگی هوای ثبت شده در ایستگاه تجریش و قلهک شهر تهران در دوره زمانی 1385 تا 1390 استف...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of applied animal scienceجلد ۶، شماره ۴، صفحات ۸۹۵-۹۰۰
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023