مقایسه کارآیی شبکه عصبی مصنوعی و رگرسیون چندگانه در پیش بینی وزن دنبه گوسفند

Authors

m.a. norouzian

department of animal science, college of abouraihan, university of tehran, tehran, iran m. vakili alavijeh

department of mathematics, faculty of mathematical science, shahid beheshti university, tehran, iran

abstract

در این مطالعه ارتباط بین وزن­های تولد، از شیرگیری و پایان پروار با وزن دنبه 69 رأس گوسفند بلوچی توسط روش­های شبکه عصبی مصنوعی و رگرسیون چندگانه بررسی شد. هر دو روش با دقت بالایی وزن دنبه را پیش­بینی کردند. هر چند که میانگین خطا به صورت معنی­داری در روش شبکه عصبی مصنوعی کمتر از رگرسیون چندگانه بود. ضریب تعیین برآورد شده در روش شبکه عصبی مصنوعی (93/0) بالاتر از رگرسیون چندگانه (81/0) به دست آمد. استفاده از شبکه عصبی مصنوعی میانگین خطای استاندارد را 59 و ضریب تعیین را 15 درصد بهبود داد. به نظر می­رسد که بتوان با استفاده از شبکه عصبی مصنوعی وزن دنبه را از صفات وزن بدن پیش­بینی کرد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی

 Background: Diabetes mellitus is a high prevalent disease among the population, and if not controlled, it causes complications and irreparable damage to the eye and cause blindness. This study goal is to investigate the predictive power of multiple logistic regression model and the Artificial Neural Network Multi-layer Perceptron (MLP) in determining patients with and without diabetic...

full text

مقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی

زمینه و هدف: بیماری دیابت شیوع بالایی در جامعه دارد و در صورت عدم کنترل، دارای عوارض جبران ناپذیری است و باعث آسیب زدن به چشم و نابینایی می شود. هدف این مطالعه مقایسه کارایی و قدرت پیش بینی مدل آماری رگرسیون لجستیک چندگانه با مدل شبکه عصبی مصنوعی پرسپترون چندلایه(mlp)  در تفکیک بیماران دیابتی دارای رتینوپاتی از دیابتی بدون رتینوپاتی است.  روش کار: نمونه ها از بین 16000 پرونده بیماران دیابتی مرک...

full text

مقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص هم‏زمان بیماری فشارخون و دیابت

  Background : Diabetes and hypertension are from important non-communicable diseases in the world and their prevalence are very important for health authorities. The objective of this study was to compare the predictive precision of joint logistic regression (LR) and artificial neutral network (ANN) in concurrent diagnosis of diabetes and hypertension.   Methods : This cross-sectional study wa...

full text

مقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان

مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پرون...

full text

مقایسه مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران لوسمی حاد

چکید ه   سابقه و هدف   مدل رگرسیون کاکس، یکی از روش‏های رایج تحلیل داده‏های بقا می‏باشد که قبل از به ‏کارگیری آن لازم است فرض متناسب بودن خطرات برقرار باشد. اخیراً مدل‏های شبکه عصبی بدون نیاز به فرض خاص، جایگزینی مناسب در پیش‏بینی بقا می‏باشند. هدف از این مطالعه، مقایسه‏ توانایی مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش‏بینی بقای بیماران لوسمی حاد بود.   مواد و روش ها   در یک مطالعه گذشته‏نگر، ...

full text

مقایسه کاربرد شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون مؤلفه‌های اصلی و رگرسیون خطی چندگانه جهت مدل‌سازی شاخص کیفیت هوای شهری

شاخص کیفیت هوا ابزار کلیدی جهت آگاهی از کیفیت هوا، نحوۀ اثر آلودگی هوا بر سلامت و روش‌های محافظتی در برابر آلودگی هوا است. هدف اصلی این تحقیق مدل‌سازی و برآورد شاخص کیفیت هوا از طریق شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون خطی چندگانه و رگرسیون مؤلفه‌های اصلی است. جهت محاسبه شاخص کیفیت هوا از داده‌های هواشناسی و آلودگی هوای ثبت شده در ایستگاه تجریش و قلهک شهر تهران در دوره زمانی 1385 تا 1390 استف...

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of applied animal science

جلد ۶، شماره ۴، صفحات ۸۹۵-۹۰۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023